
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 16 –

Exceptions

Dr. Katherine Gibson

www.umbc.edu

Last Class We Covered

• Inheritance

• Polymorphism

• Virtual functions

– Abstract Classes

• Exam 2

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• Error handling

• Exceptions

• Defining exception classes

• Using exceptions

– Try

– Throw

–Catch

• When to throw exceptions

4

www.umbc.edu

Error Handling

www.umbc.edu

Common Errors

• We have seen a number of error types:

– Could not allocate memory

– Out-of-bounds on vector

– File not found/could not be opened

– Attempting to add a train car that’s not allowed

– A poker hand with invalid cards

6

www.umbc.edu

Handling Errors – Now

• How are these errors handled?

–Print a message

• “You cannot add a second Snack Car”

–Do nothing

– Exit the program

• The errors are handled right where they occur

7

www.umbc.edu

Handling Errors at Occurence

• Advantages:

– Easy to find because code is right there

• Disadvantages:

– Error handling scattered throughout code

– Code duplication

– Code inconsistency (even worse!)

– Errors are handled however the
original coder decided would be best

8

www.umbc.edu

Two “Coders” for Each Class

• Class implementer

– Creates the class definition

– Knows what constitutes an error

– Decides how to handle errors

• Class user

– Uses the class implementation

– Knows how they want to handle errors

• (But if handled internally, the class user
may not even know an error occurred)

 9

www.umbc.edu

Separating Errors

• Want to separate errors into two pieces:

– Error detection

• Implementer knows how to detect

– Error handling

• User can decide how to handle

• Use exceptions to do this

10

www.umbc.edu

Exceptions

www.umbc.edu

Exceptional Cases

• Exceptions are used to handle exceptional cases

– Cases that shouldn’t occur normally

• Allow us to indicate an error has occurred
without explicitly handling it

– C++ uses these too, like when we try to use
.at() to examine an out-of-bounds element

12

www.umbc.edu

Try / Throw / Catch

• Exceptions are implemented using the
keywords try, throw, and catch

13

www.umbc.edu

Try / Throw / Catch

• Exceptions are implemented using the
keywords try, throw, and catch

• The try keyword means we are going to try
something, even though we are not sure it is
going to perform correctly

14

www.umbc.edu

Try / Throw / Catch

• Exceptions are implemented using the
keywords try, throw, and catch

• The throw keyword is used when we
encounter an error

• Means we are going to “throw” two things

– A value (explicit)

– Control flow (implicit)

15

www.umbc.edu

Try / Throw / Catch

• Exceptions are implemented using the
keywords try, throw, and catch

• The catch keyword means we are going to
try to catch at most one type of value

– To catch different types of values, we need
multiple catch statements

16

www.umbc.edu

Exception Example

// inside SetCarID() function

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 cerr << "ID invalid, no change";

 }

17

www.umbc.edu

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 cerr << "ID invalid, no change";

 }

}

catch () {

}
18

www.umbc.edu

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

}

catch () {

}
19

www.umbc.edu

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

}

catch (int ID) {

}
20

www.umbc.edu

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

}

catch (int ID) {

 cerr << "ID invalid, no change";

}
21

www.umbc.edu

Catching and Throwing

www.umbc.edu

Using Catch

• The catch keyword requires:

– One parameter

• Typename (int, exception, out_of_range, etc)

• Name (newID, e, oor, etc.) [optional]

• To catch multiple types of exceptions, you
need to use multiple catch blocks

23

www.umbc.edu

Using Catch

• You can throw from inside a catch block

• But this should be done sparingly and
only after careful consideration

– Most of the time, a nested try-catch means you
should re-evaluate your program design

• Uncaught exceptions will cause the
terminate() function to be called

24

www.umbc.edu

Using Catch

• Catch blocks are run in order, so exceptions
should be caught in order from

–Most specific to least specific

• To catch all possible exceptions, use:
catch(...)

• (Literally use three periods as a parameter)

25

www.umbc.edu

Throwing Out of a Function

• We can throw exceptions without try/catch

– Most commonly done within functions

• Requires that we list possible exception types
in the function prototype and definition

– Called a throw list

26

www.umbc.edu

Throw Lists

• Warn programmers that functions throw
exceptions without catching them

• Throw lists should match up with what is
thrown and not caught inside the function

– Otherwise, it can lead to a variety of errors,
including the function unexpected()

• Can also have empty throw lists for clarity:
int GetCarID() throw ();

27

www.umbc.edu

Throw List Syntax

• Functions can specify their throw lists

// Throws only 1 type of exception

retType funcName(params) throw (excep);

// Throws 2 types of exceptions (comma separated list)

retType funcName(params) throw (excep1, excep2);

// Promises not to throw any exceptions

retType funcName(params) throw ();

// Can throw any exceptions [backwards compatibility]

retType funcName(params);

28

www.umbc.edu

Throw List Example: Inside

void SetCarID(int newID) throw (int) {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

 else {

 m_carID = newID;

 }

}

29

this function might
throw an integer

www.umbc.edu

Throw List Example: Outside v0

// inside main()

 train.at(0).SetCarID(-1);

• What will happen if we run this code?

– The exception won’t be caught

– The terminate() function will be called

30

www.umbc.edu

Throw List Example: Outside v1

// inside main()

 try {

 train.at(0).SetCarID(-1);

 } catch (int ID) {

 cerr << "ID invalid, no change";

 }

31

this user has based their code
on getting input from a file

www.umbc.edu

Throw List Example: Outside v2

// inside main()

while(set == false) {

 try {

 train.at(0).SetCarID(userID);

 set = true;

 } catch (int ID) {

 cerr << "ID" << ID

 << "invalid, give another";

 cin >> userID;

 }

}

32

this user has based their
code on getting input
from a user, and being
able to repeat requests

www.umbc.edu

Exception Classes

www.umbc.edu

Exception Classes

• We can create, throw, and catch exception
classes that we have created

• We can even create hierarchies of exception
classes using inheritance

–Catching the parent class will also
catch all child class exceptions

34

www.umbc.edu

Exception Class Example

class MathError { /*...*/ };

class DivideByZeroError:

 public MathError { /*...*/ };

class InvalidNegativeError:

 public MathError { /*...*/ };

35

www.umbc.edu

Creating Exception Classes

• Name of class reflects the error

– Not the code that throws error

• Contains basic information or a message

– Parameter value

– Name of function that detected error

– Description of error

• Methods required

– Constructor (one or more)

– Accessor (one or more)

 36

www.umbc.edu

Nested Functions?

37

// function2 throws an exception

void function2()

{

 cout << "function2" << endl;

 throw int(42);

}

// function1 calls function2,

// but with no try/catch

void function1()

{

 function2();

 cout << "function1" << endl;

}

// main calls function1,

// with try/catch

int main()

{

 try {

 function1();

 }

 catch (int)

 {

 cout << "Exception"

 << "occurred"

 << endl;

 }

 return 0;

}

 What
happens

here?

Stack is unwound until
something catches the exception
OR until unwinding passes main

What
happens

then?

www.umbc.edu

Exceptions in Constructors

• Best way to handle Constructor failure
– Replaces Zombie objects!
– Any sub-objects that were successfully created are

destroyed (destructor is not called!)

• Example:

// MyClass constructor

MyClass::MyClass (int value)

{

 m_pValue = new int(value);

 // pretend something bad happened

 throw NotConstructed();

}

www.umbc.edu

Exceptions in Destructors

• Bad, bad idea…

– What if your object is being destroyed in response
to another exception?

• Should runtime start handling your exception or the
previous one?

• General Rule…

– Do not throw exceptions in destructor

www.umbc.edu

Announcements

• Project 4 is out!

• We’ll go over Exam 2 next time

40

